Spatial-temporal hybridity of distance representations

Enigmas of space, time, and their reciprocal relations in the human mind are among most intensely investigated topics in cognitive science (Núñez & Cooperrider, 2013). Lakoff and Johnson (1999) argue that the abstract domain of time is conceptualized by metaphorical extension in relation to the physical domain of space (see also Boroditsky, 2011). Engberg-Pedersen (1999) argues that the distinction between space and time should be attributed to the basic perceptual difference between static configurations of objects and dynamic developments of events (cf. Langacker, 1991), rather than space and time as such (see also Szwedek, 2009). She adds that at some cognitive levels it is possible to talk both about time-to-space and space-to-time metaphors.

Fauconnier and Turner (2008) demonstrate how space and time can be blended in a common conceptual integration network. Langacker (2012) notes that the relationship between space and time is somewhat circular. Space is more basic as the object of conception, which is indicated by the direction of metaphorical conceptions of time in terms of space. Yet, time serves as the medium of conception for spatial conceptualizations, which makes it more basic as the fundamental prerequisite for cognitive processing of space. Galton (2011) discusses limits to the spatialization of time.

This paper discusses spatial-temporal hybridity of distance representations in the semantic context of motion events (Talmy, 2000). Empirical linguistic data found in the British National Corpus suggest that within the motion-framed perspective (Kövecses, 2005), space and time can be viewed as components of a hybrid conceptual frame, which dictates the relationship between space and time in a complementary fashion (Waliński, 2013). The hybridity of space and time in motion-framed scenarios allows for expressing a distance in temporal terms from the speaker’s subjective point of view as a particularly short/long way to a destination, irrespective of the actual spatial separation.

References


