Application of conceptual conditions for translation of fictive motion
Jacek Tadeusz Waliński
Institute of English Studies, University of Lodz

Abstract
If we intend to stay within the paradigm of natural equivalence (see Pym, 2010), proper rendering of meaning in translation requires using natural equivalents (Duff 1981; Newmark 2003). A specific problem in that area concerns translating expressions of fictive motion (Langacker 1986, 2005, 2008; Talmy 1996, 2000), which are used to describe stationary objects in terms of imagined movement along or over their spatial configuration. It has long been established that the choice of motion verbs in fictive motion is not random or insignificant (Matlock 2004; Matsumoto 1996), but is subject both to linguistic and conceptual constraints. Since it is impossible to find disjunctive and exhaustive one-to-one correspondences between verbs of motion across languages, selecting appropriate verbs in certain dynamic contexts may sometimes pose a challenge for translators. This study discusses three different but mutually related conceptual conditions relating to path, manner, and instrument of motion, which may serve as guidelines for proper re-conceptualization (Lewandowska-Tomaszczyk 2010) of fictive motion expressions in the translation process.

1. Introduction
A number of linguistic studies (e.g. Jackendoff 1983, 2002; Langacker 1986, 2005, 2008; Talmy 1996, 2000a, Ch. 2, 2011) discuss expressions like in (1a–b) found in the British National Corpus (BNC):

(1) a. The new road sweeps along an incline behind Shieldaig.
 b. This wire fence goes all the way down to the wall at the other end.

What is noteworthy about these fictive motion sentences is that the described object is stationary and there is not any entity traversing the depicted path, however, it is represented as moving along its spatial configuration. Although the first sentence (1a) refers to an entity that typically serves as a medium of motion, the other example (1b) describes an object that is difficult to associate with movement (see Talmy 2000a, p. 104; Matsumoto 1996).

The phenomenon of employing motion to describe spatial configurations that do not involve actual motion nor change of state has been discussed in cognitive linguistic for over 30 years under a range of various labels. In 1983 Talmy distinguished particular linguistic structures in which a stationary linear object “is conceptualized as having a leading edge that is in virtual motion, or as being scanned along its length by one’s focus of attention—as is generally indicated by verbs that . . . suggest movement.” (Talmy 1983, p. 236). At the same time, Jackendoff (1983, p. 172–173) pointed out that fictive motion sentences pass tests for state rather than event expressions. He termed them extent sentences and categorized verbs used in such sentences as verbs of extent. Langacker (1986, p. 464–466) termed this special sort of motion used to discuss spatial configurations subjective motion to emphasize that in this case the motion occurs on the part of the conceptualizer. The term fictive motion was introduced by Talmy, who emphasizes that “The term fictive has been adopted for its reference to the imaginal capacity of cognition, not to suggest (as perhaps the word fictitious
would) that a representation is somehow objectively unreal”.¹ (Talmy 1996, p. 212). In the following years this term has been readily adopted by other linguists (e.g. Fauconnier & Turner 2002; Langacker 2005, 2008), who have proposed a number of linguistic models for explanation of this phenomenon.

It has also been found that fictive motion is subject not only to language specific grammatical constraints, but also to conceptual conditions, which appear to stem from the nature of fictive motion as a cognitively universal phenomenon (Matsumoto 1996). Studies investigating translation of fictive motion across languages (Rojo & Valenzuela 2003; Stosic & Sarda 2009) demonstrated that translators dealing with fictive motion do not follow the same routes as when dealing with actual motion expressions. This study discusses the serviceability of cognitive constraints (Matsumoto 1996; Waliński, 2015) for finding precise and natural ways of re-conceptualizing fictive motion expressions in translation.

2. Cognitive linguistic models of fictive motion

Talmy (1996) defines fictive motion broadly as “linguistic instances that depict motion with no physical occurrence” (Talmy 1996, p. 211). He distinguishes a number of relatively distinct categories of fictive motion, which embrace representations of motion attributed to immobile material objects, states, or abstract concepts. Within that taxonomy, what had been discussed previously in the linguistic literature under the above-mentioned variety of labels was recognized as the category of coverage paths. More recently, Talmy (2000a, Ch. 2, 2011) has re-labeled coverage paths to coextension paths, which he characterizes as follows:

The category of fictive motion previously most noticed, “coextension paths”, depicts the form, orientation, or location of a spatially extended object in terms of a path over the object’s extent. An example is the sentence The fence zigzags from the plateau down into the valley. Here, one cognitive subsystem in a listener has the world knowledge that the fence is stationary. But another subsystem responds to the literal wording—specifically, the motion words zigzag, from, down, and into—to evoke a sense of motion along the linear extent of the fence that serves to characterize the fence’s contour and positioning. A parallel sentence The fence zigzags from the valley up onto the plateau, evokes a sense of motion in the opposite direction. These two sentences together show how a concept—here, that of a sense of directed motion—can be imposed on or imputed to concepts of phenomena in the world through linguistic devices. By contrast, the factive stationariness of the fence might be represented, if poorly, by a sentence like The fence stands in a zigzag pattern at an angle between the plateau and the valley (Talmy 2011, p. 632).

Please note that this study focuses specifically on fictive motion in the particular narrow sense of coextension paths. For that reason, throughout this paper, unless otherwise indicated, the terms “coextension paths” and “fictive motion” are used interchangeably.

Talmy (2000a, pp. 171–172) proposes an explanation of fictive motion in terms of a general cognitive bias toward dynamism in linguistic, perceptual, and conceptual semantics.

¹ A similar discrepancy seems to occur in Polish. While some translators prefer to employ the term fikcyjny (e.g. in Langacker 2009), perhaps a more appropriate way of rendering that term in Polish would be fiktywny – to emphasize the difference between fictive and fictitious proposed by Talmy.
“It can be observed that, in language, fictive motion occurs preponderantly more than fictive stationariness. That is, linguistic expressions that manifest fictive motion far outnumber ones that manifest fictive stationariness. In other words, linguistic expression exhibits as strong bias toward conceptual dynamism as against staticism.” (Talmy, 2000a, p. 171). According to Talmy (2000a, pp. 100–104), the cognitive bias toward dynamism stems from a distinction between fictive and factive modes of cognition. The former is more perceptually salient but less veridical, while the latter is more veridical but less perceptually salient. Fictive mode requires the factive veridicality to be overridden, which takes place naturally since we tend to focus on the dynamic aspects of reality, whereas the static and unchangeable is less conspicuous.

According to Langacker (1986, 2005, 2008), both expressions of actual and fictive motion involve mental scanning along a path. In actual motion we conceptualize movement by performing sequential scanning of a mover’s progress along the path it traverses physically. Langacker (2008, p. 529) argues that the conceptualization of fictive motion essentially involves the same mental operations. An analog of the mover is a spatially extended stationary entity, e.g. a road, fence, etc. Instead of tracking the object’s movement, the conceptualizer scans mentally along the path, by which she/he invokes the constitutive locations to build up to a full conception of the object’s spatial configuration. Langacker (2005, 2008, pp. 111–112) proposes to term this more holistic mode of building up gestalts manipulable as simultaneously available wholes as summary scanning. He emphasizes that although fictive motion is imagined, its cognition is grounded in experience (see also Matlock 2004 for a discussion of conceptual motivation of fictive motion). Langacker (2008, pp. 528–529) sees fictive motion specifically as a product of subjectification, in which movement arises from the order in which the spatial configuration of the object is build up on the part of the conceptualizer (see also Brandt 2009).

However, Jackendoff (1983, 2002) questions whether any sort of mental scanning is involved in processing fictive motion sentences. He assumes that paths have a cognitive role independent of the motion of objects traversing them. Jackendoff (1983, pp. 168–173, 2002, pp. 360–362) argues that although the sense of an observer scanning the extended object has some intuitive appeal, conceptualization of fictive motion expressions is associated with static representations of Paths, which designate directions, shapes, orientations, etc. Paths themselves are atemporal and can appear as arguments of state-functions. One of them, namely non-temporal extension [EXT(x,Path)], expresses states. In a motion event the described object undergoes motion over time, whereas in a state of extension different parts of the described object occupy all parts of the path concurrently (see Iwata 1996 for a detailed analysis of motion/extent as two semantic functions).

Moreover, fictive motion often serves as an example for arguments that our conceptions of the surrounding reality are grounded in metaphorical knowledge anchored in embodied experience (Lakoff 1987, pp. 442–443; Lakoff & Turner 1989, p. 142). It has also been argued (Fauconnier 1997, pp. 177–181; Fauconnier & Turner 2002; see also Kövecses 2015, Ch. 2) that fictive motion as a mode of expression is based on conceptual integration, which conveys motion and immobility at the same time. The apparent contradiction of mixing motion with immobility is a consequence of the conceptual integration, which allows several different mental spaces to be blended simultaneously to form a single mental construction.
For instance, blending has the potential to conceptually integrate the shape of a movement through space with the spatial shape of an object. Fauconnier and Turner (2002, pp. 377–378) assume that we establish fictive motion blends because it gives us global understanding of abstract configurations at human scale.

3. Constraints on structuring fictive motion

It has long been established that the choice of verbs in fictive motion is not random or insignificant, but is subject both to linguistic and conceptual constraints. Matsumoto (1996) demonstrates some intriguing characteristics of fictive motion expressions from the perspective of a cross-linguistic comparison between English and Japanese. He starts from a distinction between travelable paths, i.e. paths that can be traveled by people, e.g. roads, paths, etc., and non-travelable paths, i.e. extended linear entities which normally are not intended for human travel, e.g. walls, wires, fences, etc. He reports that in Japanese some non-travelable entities, such as
walls and fences, cannot be described with verbs that appear in fictive motion descriptions of travelable paths. Some other non-travelable entities, such as borders and wires, take a restricted set of motion verbs, which can be motivated by the fact that in Japanese certain motion verbs cannot be used to describe movement of a path that does not involve a sensory-motor basis (Matsumoto 1996, pp. 213–217). However, in English descriptions of non-travelable linear entities in terms of fictive motion are not so restricted. Rojo and Valenzuela (2009, Exp. 1) do not observe this distinction to occur as vividly in Spanish either, but detect that it takes longer for Spanish speakers to process fictive motion sentences with non-travelable entities than those with travelable ones.

Another difference between coextension path expressions in English and Japanese lies in the aspectual properties of verbs representing fictive motion in these two languages. Matsumoto (1996, p. 204) proposes a division of fictive motion expressions into two semantic types in terms of the specificity of the motion involved, which is exemplified by sentences in (2).

(2) a. The highway passes through a tunnel.
b. The highway I was driving on passed through a tunnel then.

In the sentence (2a) fictive motion does not occur at any specific time. It is arbitrary in the sense that the moving entity is an arbitrary person, or merely the focus of attention. On the other hand, in the sentence (2b) fictive motion is specific in the sense that it is based on the experience of a specific person at a specific time. Matsumoto (1996, p. 204) terms these two types of fictive motion expressions Type I and Type II, respectively.

Using criteria used for distinguishing statives from non-statives (see Binnick 1991, pp. 173–175 for a review), Matsumoto (1996, pp. 205–206) demonstrates that in English fictive motion expressions belonging to the Type I category are stative predicates. On the other hand, fictive motion expressions belonging to the Type II category have the properties of non-stative predicates. A parallel analysis for Type I and Type II fictive motion expressions in Japanese (Matsumoto 1996, pp. 208–213) demonstrates that in Japanese, unlike English, motion verbs in both Type I and Type II fictive motion expressions have the properties of non-stative predicates. Matsumoto (1996, p. 213) concludes that the aspectual differences between English and Japanese indicate that the linguistic expression of fictive motion is not a direct reflection of conceptualization, but is mediated and constrained by grammar.
4. Translation studies on fictive motion structuring

Further insight into the structuring of fictive motion expressions across different languages comes from translation studies. Stosic and Sarda (2009) examined the role of posture verbs (e.g. sit, stand, lie; see Newman & Rice 2004) vis-à-vis fictive motion expressions as different types of locative predicates in French–Serbian translations. In particular, they tried to pinpoint the importance of using fictive motion in lieu of posture verbs in locative constructions. To that end, they performed a bi-directional analysis of translations included in a parallel corpus of French and Serbian novels.

Although both fictive motion and posture verbs can serve to translate locations across this language pair, their corpus-based study indicates that in some contexts Serbian posture verbs tend to be translated into French with fictive motion expressions. It is because Serbian uses posture verbs to express the location of both animate and inanimate objects, whereas French, with some exceptions, uses posture verbs to express the location of animate entities. Accordingly, when the described object is inanimate and when the situation does not involve any change of location, fictive motion appears to be the preferred way of rendering locative predicates in French. Quantitative, corpus-based results of the study indicate “that French speakers will preferably use fictive motion in describing certain static spatial scenes that are canonically described by posture verbs in Serbian. Moreover, in many cases, translating French fictive motion descriptions by posture verbs seems to be more natural than translating them by fictive motion.” (Stosic & Sarda 2009, p. 56). These findings indicate that the grammatical and semantic structure of the particular language constrains the use of fictive motion expressions in translation.

Following Talmy’s (2000b, Part 1) typological framework of *lexicalization patterns*, which implies that speakers of Verb-framed languages are less concerned with the domain of manner of motion than speakers of Satellite-framed languages, Slobin (1996, 2005) reported significant differences occurring when motion expressions are translated between English and Spanish. For instance, due to lexical and syntactic constraints, manner of motion was often omitted in Spanish translations of English, but added in English translations of Spanish.

Rojo and Valenzuela (2003) investigated whether the differences in the translation between English and Spanish reported by Slobin for actual motion expressions apply to fictive motion. They found that indeed in some cases, information on the manner of motion was lost, in other cases the path was omitted, and in yet other cases translators, instead of looking for the direct equivalent of the English verb, preferred to use a Spanish motion verb that encompasses the path expressed in the English preposition. This is particularly evident when Spanish translators must deal with *clause-compacting* (Slobin 1996, p. 202), i.e. when several segments of a path are encoded with a single clause with prepositional phrases or satellites appended to the verb, which is demonstrated in (3).

(3) a. English SL: “Their way wound along the floor of the hollow, and round the green feet of a steep hill into another deeper and broader valley, and then over the shoulder of further hills, and down their long limbs, and up their smooth sides again, up on to new hill tops and down into new valleys.” (Tolkien 1954/2012a, *The Fellowship of the Ring*, p. 155).
b. Spanish TL: “El camino serpenteaba a lo largo de la hondonada, bordeando el pie verde de una colina escarpada hasta entrar en un valle más profundo y más ancho, y luego pasaba sobre otras cimas, descendiendo por las largas estribaciones y subiendo otra vez por las faldas lisas hasta otras cumbres, para bajar luego a otros valles.” (Tolkien 1954/2012b, La Comunidad del Anillo, p. 145).

This example shows that when encountering clause-compactung Spanish translations tend to break the path using separate verbs that provide an appropriate imagery for the described setting.

However, overall the analysis of the gain or loss of the path/manner information in translations of English novels into Spanish conducted by Rojo and Valenzuela (2003), demonstrated a relatively less significant divergence in comparison to the results reported by Slobin (1996). While Slobin (1996, p. 210) reported that in English to Spanish translations of actual motion expressions the path information was reduced in almost 24% of the cases and the manner information was left out in 49% of the cases, Rojo and Valenzuela (2003, p. 135) found that for fictive motion expressions the path information was suppressed in 6.11% of the cases and manner was omitted in 10.5% of the cases. Rojo and Valenzuela (2003) argue that the tendency to keep details about the path and manner in translations of fictive motion expressions can be motivated by conceptual conditions for structuring fictive motion, which guide translators’ efforts as effectively as grammatical constraints.

5. Conceptual conditions for structuring fictive motion

Although the grammatical and lexical structure of the particular language constrains the use of fictive motion expressions, it has been found that coextension paths share certain common properties across languages, too. These properties, or conditions as termed by Matsumoto (1996), effectuate in restrictions on the kinds of motion verbs that occur in fictive motion. Matsumoto argues that coextension paths are subject to path condition, which states that “some property of the path of motion must be expressed in fictive motion sentences” (Matsumoto 1996, p. 194). The condition posits that if the verb itself does not convey information about the path, some concomitant adverbial or adpositional phrase must be used to describe it, which is demonstrated in (4).

(4) a. Jack began to run.
 b. ? The road began to run.
 c. The road began to run along the shore.

Sentences (4a–c) demonstrate that when the verb run, which does not encode any information about the path, is used to represent actual motion, as in (4a), it does not require any prepositional or adverbial phrase describing some property of the path. However, example (4b) shows that fictive motion requires some path-related information always to be present, which can be provided by a prepositional phrase, as in (4c).

However, when a verb does provide information about the path of motion, an additional phrase is not required, as shown in (5).

(5) a. The road began to ascend/descend.
 b. The road began to curve.

These sentences demonstrate that verbs of motion that encode some property of the path directly do not require any adpositional or adverbial phrases in fictive motion sentences. For
instance, verbs *ascend* and *descend* (5a) enable us to infer a slope, while the verb *curve* (5b) enables us to infer a turn of the path. For that reason, they do not require any additional complementation to express coextension paths.

Additionally, Matsumoto proposes *manner condition*, which states that “no property of the manner of motion can be expressed unless it is used to represent some correlated property of the path” (Matsumoto 1996, p. 194). It is demonstrated in (6).

(6) a. The path *zigzags* up the hill.
 b. The path *plunges* downhill.
 c. ? The path *rolls* up the hill.

These sentences demonstrate that if a manner-conflating verb is used to express fictive motion, the information on manner conveyed by the verb must be related to some property of the path. For instance, in (6a) the verb *zigzag* enables us to infer the overall shape of the path. In (6b) the information about the manner of motion enables us to mentally map the speed associated with the verb *plunge* onto the slope of the path – we infer that it was very steep. However, the manner of motion conflated in the verb *roll* in (6c) is difficult to relate to any specific property of the path. For that reason, it is less likely to feature in coextension paths. Matsumoto (1996, pp. 195–203) argues that the manner condition restricts manner information irrespective of whether it is encoded in the verb or in adverbials.

Waliński (2013, 2014) points to a close relatedness between manner and instrument in motion verbs. Essentially, manner and instrument share common conceptual ground and participate in the action described by the verb simultaneously in a coordinate manner (Wierzbicka 1996; Mari 2006). For that reason, it is practically impossible to entirely separate the instrument from the manner of motion, since they form a sort of semantic cline. Since objects described with fictive motion are stationary and there is no sentient agent capable of making use of a motion instrument, Waliński (2015) proposes that coextension paths must avoid referencing to the semantics of instrumentality. This is exemplified by contrasting sentences for actual motion (7a) and fictive motion for travelable (7b) and non-travelable (7c) paths.

(7) a. Ann goes to London by car. / Tom goes to London by train.
 b. ? This *road* goes to London by car. / ? This *track* goes to London by train.
 c. ? This *wall / fence* goes all the way down to the river by [car / train, etc.]

The *instrument condition* essentially forbids structuring fictive motion with semantic patterns conflating instrumentality. However, because the semantic aspects of instrument and manner are not easily disentangled, the instrument condition overlaps, at least to some extent, with the manner condition put forward by Matsumoto (1996, p. 194). For that reason, it states less restrictively that “no property of motion instrument can be expressed in a coextension path, unless it is used to represent some specifically correlated property of the path” (Waliński 2015, p. 98).

2 Goddard and Wierzbicka (2009) demonstrate that semantics of physical activity verbs in English, Polish, and Japanese ties the kind of instruments used in the action with the manner in which the instrument is used.
6. Application of conceptual conditions for translation of fictive motion

The conceptual conditions can act as a guide for rendering fictive motion expressions in translation. Translating motion expressions between English and Polish is not always a straightforward task, despite the fact that both these languages belong to the Satellite-framed group. As noted by Kopecka (2010, p. 241), “Polish does not exploit the slot of the main verb as productively as English does. In Polish, the size of the Manner verb lexicon, although still substantial, appears to be smaller, and the sorts of fine-grained semantic components of Manner lexicalized in the verbs are less diverse.” For that reason, it is impossible to find exhaustive one-to-one correspondences between English and Polish verbs of motion. For instance, the verb *walk* is to some extent subsumed in the Polish verb *spacerować*, and is often translated using the more generic verb *iść*, but it can be rendered in the opposite direction by numerous English verbs, such as *amble, mosey, perambulate, promenade, saunter,* and *stroll,* depending on the particular context. Verbs *march* (*maszerować*), *fly* (*latać*), and *sail* (*żełgować*), at first glance seem to be largely correspondent between English and Polish, but they also have uses which are not compatible, e.g. *latać po zakupy* – to run around shopping, etc.

Correspondences between verbs of motion used in coextension path expressions across this language pair, at least in some cases, are also difficult to establish. Tomczak and Evert (2015) tested cognitive representations and online processing of fictive motion sentences in English monolinguals, Polish monolinguals, and advanced Polish users of English as a second language (L2) to examine cross-linguistic influences between L1 and L2 in the processing of coextension paths. All three groups of participants went through a parallel task procedure in their respective languages. For the Polish version of the task translation equivalents of the English sentences were used. For each group of participants sentence meaningfulness judgment data were collected. The experimenters found that the two groups of monolingual speakers differed in how they assessed the meaning of sentences used in the experiment. The Polish monolinguals rated both types of fictive motion sentences lower on meaningfulness, in particular those with non-travelable paths, than English monolinguals. Interestingly, while the monolingual groups differed in their judgments of sentence meaningfulness, the Polish L2 users of English rated the sentences similarly meaningful in both languages, which can be attributed to transfer from L2 to L1.

Tomczak and Evert (2015) allow as a possibility that the lower ratings of Polish monolingual speakers may have been induced by the choice of the experimental sentences, which were direct translations from English. Obviously, the fact that “the English and Polish sentences had equivalent wording” (Tomczak & Evert 2015, p. 60), does not mean that they sound equally natural in both languages, although this hypothesis is not explored intensely in the original study. The lack of naturalness in some instances of translation has been observed in translations studies for a long time. Duff (1981) uses the term *translationese* to refer pejoratively to the language of translation that derives from calquing ST lexical or syntactic patterning. Newmark (2003) uses a similar term *translatorese* to refer to the automatic choice of the most common dictionary translation of a word where a less common alternative would be more appropriate.
The conceptual conditions can serve as guidelines for a translator uncertain how to naturally render the meaning of certain English motion verbs used in fictive motion into Polish, as demonstrated in (8), which is based on the example (1a) found in the BNC.

(8) a. The road sweeps along an incline behind Shieldaig.
 b. ? Za Shieldaig droga omiata stok
 c. Za Shieldaig droga okrąga stok łukiem.

Although the English verb *sweep* can be translated into Polish literally with the lexeme *omiatać* (8b), in the fictive motion scenario it is specifically the circular manner of movement, rather than the activity as such, that is relevant to expressing the meaning precisely. For that reason, the variant in (8c), which literally means “skirts in an arch-like manner”, appears to express the meaning of the English sentence more precisely, and may sound more natural for some Polish speakers, especially those unfamiliar with English (cf. Tomczak & Evert 2015).

Moreover, the conceptual conditions may be used to explain why some Polish verbs in fictive motion expressions must be translated into English using certain verbs of motion, but not others, as shown in (9).

(9) a. Droga prowadzi przez las.
 b. ? The road *drives* through the forest.
 c. The road *leads* through the forest.

The Polish verb *prowadzić* is a polysemous lexical item that corresponds to English verbs *drive* and *lead* in actual motion expressions. However, the verb *drive* cannot be used to render the meaning in fictive motion, because objects described in this way, such as roads, are inanimate entities incapable of making use of motion instruments.

Rojo and Valenzuela (2003) used the conceptual conditions to explain the difference in strategies used for rendering fictive motion vis-à-vis actual motion expressions between English and Spanish. Since in fictive motion the semantic focus is put on the path (as stated by the *path condition*), translators are more reluctant to leave out the information on the path of motion, which is central to this type of expressions. Moreover, although the information on the manner of motion is overall less central to coextension paths, whenever it occurs in fictive motion, it conveys information related directly to some property the path (as stated by the *manner condition*). For that reason, translators tend to follow the manner information expressed in coextension paths much more faithfully than when dealing with actual motion expressions. However, in some cases translators render figurative fictive motion expressions too literally, which disrupts the naturalness of the original text. As demonstrated in (8–9), the translation can be guided, at least to some extent, by application of the conceptual conditions.

7. Conclusion

Over the last two decades there has been a modest but steady flow of studies advocating the application of insights from cognitive linguistics to translation research (e.g. Tabakowska 1993; Hejwowski 2007; Deckert 2013). These studies emphasize that proper account of translation requires looking beyond the linguistic transcoding alone, because the maximally meaningful transfer frequently is not one-to-one lexical and syntactic correspondence between the SL and TL text. From the cognitive perspective, translation can be approached as re-conceptualization of the SL message, which is mediated by both the linguistic and encyclopedic knowledge of the speaker, their preferences, expectations, and intensions.
(Lewandowska-Tomaszczyk 2010). On this ground, the translation is accomplished through a number of mental cycles, which are guided not only by the language translators use, and the constraints of the context and discourse, but also by the cognitive principles that organize our conceptions of the reality. Since translators first absorb the message in the source language, and then re-conceptualize it in the target language, awareness of the semantic conditions underlying structuring fictive motion can aid them in finding most meaningful and natural equivalents.

References

Literary texts
